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Abstract. The ocean’s ability to store large quantities of carbon, combined with the millennial longevity over which this

reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of

processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present

simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution

of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling5

of the surface ocean (3.2 ◦C) and the expansion of both minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225

%) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover broadly consistent with proxy

reconstructions. Within the ocean, a significant reorganisation of the large-scale circulation and biogeochemical fields occurs.

The LGM simulation stores an additional 322 Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation, particularly

due to a strengthening in Antarctic Bottom Water circulation. However, 839 Pg C is lost from the upper ocean via equilibration10

with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean

also experiences an oxygenation (>100 mmol O2 m−3) and deepening of the aragonite saturation depth (> 2,000 m deeper)

at odds with proxy reconstructions. Hence, physical changes cannot in isolation produce plausible biogeochemistry nor the re-

quired drawdown of atmospheric CO2 of 80-100 ppm at the LGM. With modifications to key biogeochemical processes, which

include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation15

and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic

reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon

at the LGM (520 ± 400 Pg C). These modifications also go some way to reconcile simulated export production, aragonite sat-

uration state and oxygen fields with those that have been reconstructed by proxy measurements, thereby implicating changes

in ocean biogeochemistry as an essential driver of the climate system.20

Keywords: atmospheric CO2, glacial-interglacial cycles, palaeoclimate modelling, ocean biogeochemical cycles, Climate

System Model
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1 Introduction

The late Pleistocene is characterised by a sawtooth-like cycling between cool glacial and warm interglacial states (Emiliani,

1966; Shackleton, 1967). Global temperatures and atmospheric CO2 are strongly correlated across these climate cycles with

approximately 80-100 ppm of change corresponding to global-mean temperature variations of 3-4 ◦C (Grootes and Stuiver,

1997; Jouzel et al., 1987; Parrenin et al., 2013; Petit et al., 1999). This correlation provides an important clue that aids our5

understanding of how the Earth experiences periods of warm and cold climate. Given the larger carbon storage potential of

the ocean compared to the land and atmosphere, and given that major changes to oceanic circulation and productivity occur

over multi-millennial timescales, it is now widely acknowledged that the ocean is a major player in driving glacial-interglacial

changes in atmospheric CO2 (Skinner et al., 2015; Wilson et al., 2015; Yu et al., 2014). However, identifying the combination

of mechanisms that drove a flux of carbon into the ocean at the LGM remains a fundamental and largely unresolved problem.10

If we first consider only physical changes, a net influx of CO2 caused by cooling is a feature of the glacial ocean. How-

ever, the influx attributed to cooling is partially offset by increased salinity in the glacial ocean, so that the total magnitude

of influence by cooling is small and constrained to roughly 15 ppm (Brovkin et al., 2007; Menviel et al., 2012; Sigman and

Boyle, 2000). Therefore, other physical changes that partition more carbon in the deep ocean, notably changes to the large-scale15

circulation and sea-ice fields, may make a considerable contribution. Substantial research effort has revealed that the glacial

circulation is indeed conducive to storing more carbon in the ocean, with a greater proportion of the deep ocean dominated

by southern source waters (Adkins, 2013; Duplessy et al., 1988; Oliver et al., 2010; Skinner et al., 2010; Watson and Naveira

Garabato, 2006). The existence of this glacial-type circulation has recently been found to be inseparable from an expanded

sea ice field (Ferrari et al., 2014; Sun and Matsumoto, 2010), which further restricts outgassing of carbon from nutrient-rich20

deep waters that upwell in the high latitudes. Other mechanisms, such as an equatorward shift in the westerly winds causing

polar stratification (Toggweiler et al., 2006), greater brine rejection due to an expanded sea ice extent (Bouttes et al., 2010),

and reduced interaction with bottom topography causing less diapycnal mixing (De Boer and Hogg, 2014), have also been

implicated in the development of a glacial-type ocean circulation.

25

However, the most promising explanations of the decline in atmospheric CO2 during glacial periods involve ocean biogeo-

chemical changes in concert with reorganisations of the global overturning circulation (Hain et al., 2010; Sigman et al., 2010).

Increased glacial productivity, first postulated by Broecker (1982) and now known to be driven by an increased deposition

of aeolian dust to the Southern Ocean (Martinez-Garcia et al., 2014), is an established feature of the glacial sub-Antarctic

Southern Ocean. The Southern Ocean represents the most important region of carbon outgassing to the atmosphere because30

of the circumpolar extent of deep water upwelling (Burke and Robinson, 2012). Enhanced export production in this region is

thus a prime candidate for explaining a large portion of the glacial-interglacial CO2 difference. This has been demonstrated by

models of varying complexity (Brovkin et al., 2012; Hain et al., 2010; Menviel et al., 2012).
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In numerous other regions, however, productivity appears to have been reduced during glacial climates. The affected regions

include waters south of the Antarctic Polar Front (Francois et al., 1997; Jaccard et al., 2013), the North Pacific (Crusius et al.,

2004; Jaccard et al., 2005; Kohfeld and Chase, 2011; Ortiz et al., 2004), tropical Indian Ocean (Singh et al., 2011) and the

Equatorial Pacific (Costa et al., 2016; Herguera, 2000; Loubere et al., 2007). A weaker export production in these regions

would have offset a strengthened biological pump in the Sub-Antarctic, thereby weakening the ability of the ocean to store5

carbon at the LGM. Whether the strengthening of the biological pump in the glacial sub-Antarctic was able to outweigh losses

in productivity in other regions requires further testing. This has led some authors to look for alternative biological mecha-

nisms, notably temperature-dependent remineralisation (Chikamoto et al., 2012; Matsumoto, 2007; Menviel et al., 2012) and

an altered CaCO3:Corganic export production ratio (Archer and Maier-Reimer, 1994; Lerman and Mackenzie, 2005; Sigman

et al., 1998), to explain the net flux of carbon into the ocean.10

Therefore, numerous physical and biogeochemical changes have been associated with a glacial ocean and all have been iden-

tified in some respect as important drivers of the carbon cycle. Now, recent insights into the distributions of dissolved oxygen

(Jaccard et al., 2014) and carbonate species (Yu et al., 2014) within the glacial ocean provide new opportunities to identify

which combination of physical and biogeochemical changes could have realistically sequestered carbon within the ocean at the15

LGM. Following the experiments conducted by Tagliabue et al. (2009), we use an Earth System Model with attached biogeo-

chemistry, CSIRO Mk3L-COAL, to test current theories against these new insights. Using our simulated LGM ocean state, we

provide a new perspective on the mechanisms responsible for the 80-100 ppm drawdown in atmospheric CO2 during glacial

cycles and demonstrate the importance of marine biogeochemistry to global climate.

20

2 Model and experiments

The model simulations were performed using the CSIRO Mk3L climate system model version 1.2 (Phipps et al., 2011, 2012),

which includes components that describe the atmosphere, land, sea ice and ocean. The horizontal resolution of the atmosphere,

land and sea ice models are 5.6◦×3.2◦ in the longitudinal and latitudinal dimensions, respectively, with 18 vertical levels. The

ocean model has a horizontal resolution of 2.8◦×1.6◦ with 21 vertical levels. For this study, we conduct simulations using both25

the full climate system model and the stand-alone ocean model.

Two fully coupled model experiments were undertaken to simulate the Pre-Industrial (Cpl-PI) and Last Glacial Maximum

(Cpl-LGM) climates. The Cpl-PI climate was obtained by forcing the model with an atmospheric CO2 concentration of 280

ppm and by prescribing 1950 CE values for the orbital parameters. This experiment was integrated for a total of 10,000 years30

(Phipps et al., 2013). The Cpl-LGM simulation followed the protocol developed by Phase III of the Palaeoclimate Modelling In-

tercomparison Project (PMIP3), with the exception that no changes were made to terrestrial topography, oceanic bathymetry or

the positions of the coastlines. The atmospheric CO2 equivalent concentration was set to 167 ppm, providing a radiative forcing
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equivalent to the specified reductions in the atmospheric concentrations of CO2, CH4 and N2O from 280 ppm/760 ppb/270 ppb

for pre-industrial simulations to 185 ppm/350 ppb/200 ppb for LGM simulations. The orbital parameters were set to values for

21 ka BP. The Cpl-LGM simulation was initialised from the state of the Cpl-PI simulation at the end of model year 100. The

model was then integrated for a total of 3,900 model years, until it had reached quasi-equilibrium. Over this integration the

ocean experienced a slow drift in whole-ocean salinity so that 0.5 psu was added, reflecting the coupling between a cooler5

atmosphere and the ocean.

With the Cpl-LGM climate state a suite of different ocean biogeochemical simulations were made with slightly different

parameterisations to explore the effect on the carbon cycle (Table 1). These experiments utilised Mk3L-COAL (Carbon-Ocean-

Atmosphere-Land), an enhanced version of the Mk3L climate system model which includes biogeochemical modules embed-10

ded within the ocean, atmosphere and terrestrial models. For a description of the ocean biogeochemistry the reader is directed

towards Appendix A of Matear and Lenton (2014) and the experiments of Duteil et al. (2012).

A total of 8 ocean-only simulations with on-line biogeochemistry were undertaken. All experiments were forced by key bound-

ary conditions (wind stresses, temperature, salinity, incident radiation, sea ice and atmospheric pressure at sea level), which15

were obtained as averages over the final 50 years of the fully coupled model experiments. The heat and freshwater fluxes into

the ocean were determined by relaxing the SST and SSS towards the prescribed fields using a 20 day timescale. Experiments

O-PI1 and O-LGM1 represent standard Pre-Industrial and Last Glacial Maximum simulations with atmospheric CO2 con-

centrations at 280 and 185 ppm, respectively. Experiments O-PI2 and O-LGM2 were exactly the same as experiments O-PI1

and O-LGM1, except that atmospheric CO2 concentrations were switched to investigate the effect of physical changes on the20

storage of carbon in the ocean. For these experiments, the biogeochemical model was unmodified. The remaining experiments,

O-LGM3 to O-LGM6, represent glacial ocean-only runs in which the ocean biogeochemistry was altered. These alterations

were as follows:

O-LGM3. The scaling factor (SO
npp) was increased by a factor of 10 (Eq. (1)) to increase the export of Particulate Organic25

Carbon (POC) from the surface ocean, and therefore strengthen the biological carbon pump. Increasing POC export in the

LGM ocean was motivated by an enhanced delivery of iron to the surface ocean via aeolian dust at the LGM (Delmonte et al.,

2004; Kawahata et al., 2000; Lambert et al., 2012; Martin, 1990; Martínez-Garcia et al., 2009; Martinez-Garcia et al., 2014;

Watson et al., 2000).

POC = SO
npp ∗Vmax ∗min(

[PO4]
[PO4] +Pk

, F (I)) ∗ 12 (1)30

O-LGM4. The POC remineralisation depth was increased by changing the power law exponent (Rempwl) in Equation (2) from

-0.9 to -0.7, which replicated a bulk shift of POC from the upper to the deep ocean. The motivation for increasing the amount

of POC that reaches deeper levels is the expectation that a cooler ocean would reduce the rate of bacterial remineralisation

of POC in the upper ocean (Rivkin and Legendre, 2001; Matsumoto, 2007). This change increased the simulated POC that
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reaches the 1,000 m depth level from 12.5 % to 20 %.

Remin(z) = min(1.0, (
zthick

100.0
)Rempwl) (2)

O-LGM5. Export production of Particulate Inorganic Carbon (PIC) was turned off by setting the rain ratio (RPIC) of PIC:POC

to zero in Equation (3). A reduction in PIC export at the LGM would increase the carbon content of the ocean, as marine

calcifiers release CO2 during formation of their shells and enhanced carbon loss via outgassing. The motivation for reducing5

PIC export in the glacial ocean is also temperature related, as there is a strong positive relationship between temperature and

calcification (Lough and Barnes, 2000).

PIC = POC ∗RPIC (3)

O-LGM6. All three modifications to ocean biogeochemistry were employed. All ocean-only simulations were integrated for

10,000 years to ensure that the ocean carbon cycle reached a steady state.10

To assess whether the behaviour of the biogeochemical tracers within the coupled model differed from those in the ocean-

only model, we ran the coupled model with online ocean biogeochemistry for a further 1,000 years using the steady-state

biogeochemical fields from the ocean-only experiments. This assessment was made using both the PI and LGM climates. For

key diagnostics, such as the meridional overturning circulation, ocean carbon content and global export production, the be-15

haviour of the ocean-only simulation differed by less than 1 % from the coupled simulations. Given the computational speed

of the ocean-only model, these experiments provide an ideal platform to test the sensitivity of the ocean biogeochemical fields

to the parameterisations used in the biogeochemical model.

3 Results and discussion20

In the following, we first discuss the simulated physical changes to the ocean observed between the Cpl-PI and Cpl-LGM simu-

lations. Second, we discuss how the ocean biogeochemical fields differed between the O-PI1 and O-LGM1 simulations, which

were forced with the output of the coupled simulations. Finally, we explore how modifying biogeochemical parameterisations

alters the biogeochemistry, including changes to carbon storage, export production, aragonite saturation state and dissolved

oxygen, that reconcile our simulated glacial ocean with what is considered realistic according to palaeoclimate proxy records.25

3.1 LGM climate: physical fields

3.1.1 Sea surface temperature (SST)

The simulated change in SST between the Cpl-PI and the Cpl-LGM simulations shows a similar magnitude and spatial struc-

ture to proxy reconstructions and prior modelling studies, with greatest cooling in the equatorial oceans, high latitudes and30
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eastern boundary currents, and the least cooling in the subtropics and western boundary current regions (Fig. 1; Table 2). The

global SST mean of the Cpl-LGM was 3.2 ◦C cooler than the Cpl-PI. This change falls within the range of estimates (∼2-

4 ◦C) produced by other climate models (Alder and Hostetler, 2015; Annan and Hargreaves, 2013; Braconnot et al., 2007;

Ganopolski et al., 1998; Kitoh et al., 2001; Shin et al., 2003; Smith and Gregory, 2012), but sits towards the cooler limits

of previous multiproxy SST reconstructions that estimate a change of 2 ± 1.8 ◦C (Ballantyne et al., 2005; McIntyre et al.,5

1976; Waelbroeck et al., 2009). However, a recent reanalysis of the proxy data presented by Waelbroeck et al. (2009) showed

past estimates may have underestimated cooling by as much as 50 % (Ho and Laepple, 2015). This finding reconciles some

disagreement between climate models and palaeoproxies, and places our simulated cooling of 3.2 ◦C well within the bounds

of uncertainty in reconstructions.

10

Regionally, the greatest cooling took place in the high latitudes and in the Equatorial Pacific, where temperatures were in

excess of 4 ◦C cooler than the Cpl-PI climate. Meanwhile, the Western Pacific Warm Pool, subtropical gyres and western

boundary currents cooled less (0.5-3.0 ◦C). Again, proxy (Bostock et al., 2013; Gersonde et al., 2003, 2005; Kaiser et al.,

2005; Kucera et al., 2005; Lamy et al., 2004; Lüer et al., 2009; Martínez-Garcia et al., 2009; Waelbroeck et al., 2009) and cli-

mate model simulations (Alder and Hostetler, 2015; Annan and Hargreaves, 2013, 2015; Shin et al., 2003) are consistent with15

both the magnitude and spatial pattern of cooling. Enhanced cooling in the high latitudes and in the eastern boundary currents

generated strong zonal and meridional temperature gradients relative to Cpl-PI SST. There is a consistent regional pattern to

SST cooling in the LGM emerging from proxy and model simulations (Annan and Hargreaves, 2013; Braconnot et al., 2007;

Felis et al., 2014) that is broadly consistent with our simulated cooling.

20

Where there is still large uncertainty in SST change at the LGM is in the tropical ocean (see Annan and Hargreaves, 2015, for

a review). The Cpl-LGM cooling of 3.3 ◦C across the tropical ocean (15◦ S - 15◦ N) is greater than other simulations (Annan

and Hargreaves, 2013; Ballantyne et al., 2005; Braconnot et al., 2007; Ganopolski et al., 1998; Kitoh et al., 2001; Smith and

Gregory, 2012), but falls well within the −5.1 to −2.17 ◦C estimated by Ho and Laepple (2015). Regionally, climate models

and proxies both agree that cooling in the tropical Atlantic Ocean probably exceeded cooling in the tropical Pacific and Indian25

Oceans by roughly 1 ◦C (Ballantyne et al., 2005; Ganopolski et al., 1998; Kitoh et al., 2001; Kucera et al., 2005; Otto-Bliesner

et al., 2009; Waelbroeck et al., 2009). In contrast, the tropical Pacific Ocean cooled by 2 ◦C more than the Tropical Atlantic

and Indian Oceans in the Cpl-LGM simulation. Although SSTs in the east equatorial Pacific have been reported as 1.5-3.0 ◦C

cooler than the PI (Dubois et al., 2014; Kucera et al., 2005), the simulated cooling over much of the tropical Pacific appears

excessive compared to previous studies (Ballantyne et al., 2005; Braconnot et al., 2007; Chen et al., 2005).30

3.1.2 Sea ice extent

While true estimates of sea ice coverage in the PI climate can only be inferred from whaling records, our Cpl-PI sea ice extents

are consistent with estimates made using satellite measurements during the 1979-1987 period (Gloersen et al., 1993, Table 2).

6
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These measurements represent the first global estimates of sea ice coverage, and although some evidence indicates that sea ice

has declined by 20 % since the 1950’s (Curran et al., 2003), the strong agreement between the Cpl-PI sea ice fields and the

observations of Gloersen et al. (1993) provide a good benchmark for assessing LGM sea ice changes.

Associated with cooler SSTs, sea ice coverage (areas with sea ice concentration at or in excess of 15 %) was greatly ex-5

panded in the Cpl-LGM for both hemispheres relative to the Cpl-PI (Fig. 2, Table 2). In the Southern Hemisphere, total sea

ice coverage increased by ∼120 % and ∼225 % at its seasonal maximum and minimum, respectively, relative to the Cpl-PI. In

the Northern Hemisphere, total sea ice coverage increased by ∼145 % and ∼105 % at its seasonal maximum and minimum,

respectively, relative to the Cpl-PI. These increases correspond to equatorward expansions of the sea ice field of between 5-10◦

around the Southern Ocean, and in excess of 15◦ in both the North Atlantic and Pacific Oceans. The strong expansion of sea10

ice aligns with a recent theory postulated by Ferrari et al. (2014), who argued that the changes evident in global overturning

circulation at the LGM (discussed in the next section), are inherently linked to an expanded sea ice field during both the winter

and summer seasons.

The simulated expansion of sea ice around much of the Southern Ocean agrees well with proxy reconstructions. Maximum sea15

ice extent reached as far north as 47◦ S in both the Atlantic and Indian sectors and 57◦ S in the Pacific sector of the Southern

Ocean (Gersonde et al., 2005, Fig. 2). This magnitude of growth in the Atlantic and Indian sectors has been tested and largely

supported by a few subsequent studies (Collins et al., 2012; Xiao et al., 2016), and is consistent with our Cpl-LGM sea ice

field. In the Pacific sector, however, the simulated maximum sea ice edge extends well equatorward of the 57◦ S suggested by

Gersonde et al. (2005) (Fig. 2). By comparing the coverage of sea ice in the Southern Hemisphere of the Cpl-LGM (∼46×10620

km2) with that estimated by Gersonde et al. (2005) (∼39×106 km2), we can attribute the simulated excess of sea ice in the

glacial Southern Ocean to a possible overestimate in the Pacific sector.

In the North Atlantic, perennial sea ice cover was present in the Greenland Sea and Fram Strait during the LGM (Müller

et al., 2009; Telesiński et al., 2014). There is also evidence that winter sea ice reached south of Iceland to fill much of the25

Labrador Sea (Pflaumann et al., 2003) and extended along the eastern Canadian margin (De Vernal et al., 2000, 2005). Mean-

while, the central and eastern parts of the subpolar North Atlantic are thought to have been largely ice-free (Pflaumann et al.,

2003). In the North Pacific, proxy reconstructions suggest strong cover in the Okhotsk Sea (Sakamoto et al., 2005; Nürnberg

and Tiedemann, 2004; Yamazaki et al., 2013), the Japan Sea (Ikehara, 2003) and the western Bering Sea (Ovsepyan et al., 2013;

Riethdorf et al., 2013b, a), with seasonally ice-free conditions in the central west (Jaccard et al., 2005). Sea ice reconstructions30

are lacking in the central and eastern North Pacific Ocean, but climate models that completed the PMIP3 LGM experiment

simulate stronger sea ice presence in the western margins of the Northern Hemisphere basins (Fig. 2). The Cpl-LGM sea ice in

this study is broadly consistent with the palaeo evidence in the North Atlantic, but an intense and year-round cover developed

over the central North Pacific that contrasts directly with the findings of Jaccard et al. (2005), whom argued for ice-free condi-

tions during the summer. Furthermore, the expansion of Cpl-LGM sea ice is greater than other PMIP3 climate models, which35
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places our simulated sea ice field towards the higher bounds predicted by climate system models for the LGM.

3.1.3 Meridional overturning circulation

The changes observed in the surface ocean within the Cpl-LGM climate were accompanied by changes in the global meridional5

overturning circulation (Fig. 3; Table 2). The rate of Antarctic Bottom Water (AABW) formation, defined here as the strongest

negative cell south of 60◦ S, was greater in the Cpl-LGM than the Cpl-PI. AABW formation rates approached 25 Sv in the

Cpl-LGM, about double that of the Cpl-PI. The greater formation rate increased the transport of AABW out of the Southern

Ocean (northwards of 50◦ S) by roughly a factor of four from 17,440 to 71,664 Sv. This indicates that the increase in AABW

formation was also associated with an increase in the proportion of this water mass that was carried out of the Southern Ocean.10

The formation rate of North Atlantic Deep Water (NADW), defined as the maximum cell of the North Atlantic streamfunction

north of 45◦ N, was 12.5 Sv in the Cpl-LGM and 16 Sv in the Cpl-PI simulation, which equates to a∼25 % reduction in NADW

strength. Although this decrease was slight, the southward transport of NADW across the Equator was reduced three-fold from

18392 to 5391 Sv. Our simulated strength of NADW formation in the Cpl-LGM extends the lower bound of previous LGM15

simulations from 13.9 Sv to 12.5 Sv (Otto-Bliesner et al., 2007). The weakened formation of NADW was also associated with

its shoaling from approximately 3,000 m in the PI to 1,500 m in the Cpl-LGM. Thus, in the Cpl-LGM the water mass below

1,500 m was characterised by AABW.

The changes to AABW and NADW circulation were conducive to the development of a global overturning circulation domi-20

nated by dense water from the Southern Ocean. An altered global overturning circulation is now a widely recognised component

of glacial climate states across the Pleistocene (Broecker, 2013). In fact, several authors now attribute at least half of the glacial-

interglacial atmospheric CO2 difference to circulation changes in the ocean (Broecker et al., 2015; Kohfeld et al., 2005; Sigman

et al., 2010). Theoretical, proxy and model-based research is now beginning to converge on the large-scale characteristics of

the glacial ocean circulation, where AABW was more dominant due to a combination of expanded sea ice, enhanced brine25

rejection causing denser bottom waters, and reduced diapycnal mixing (Adkins, 2013; De Boer and Hogg, 2014; Ferrari et al.,

2014; Skinner et al., 2010; Watson and Naveira Garabato, 2006). The neutral density boundary between a northward flowing

AABW and a southward flowing NADW was also shoaled substantially at the LGM in comparison with the current climate.

Numerous palaeonutrient tracers support the presence of AABW within the deep North Atlantic Ocean at the LGM (Curry and

Oppo, 2005; Duplessy et al., 1988; Keigwin, 2004; Marchitto and Broecker, 2006; Oliver et al., 2010). The maximum depth30

of NADW flow was displaced to above 2,000 m as a direct result, and the shoaling of NADW facilitated the development of

a saltier, more stratified glacial deep ocean (Adkins, 2013). Ferrari et al. (2014) have interpreted these changes as inextricably

linked to the expansion of sea ice in the Southern Ocean, which caused a greater proportion of Circumpolar Deep Water to

rise into a zone of negative buoyancy flux and thereby produce greater quantities of denser AABW. Imposing only the orbital

8
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parameters and atmospheric radiative forcing of the LGM, our Cpl-LGM simulation was able to reproduce these features of a

glacial ocean circulation.

3.2 LGM climate: biogeochemical fields

The physical changes in the ocean between the Cpl-PI and the Cpl-LGM, as described above, caused significant changes in5

ocean biogeochemistry within the ocean-only simulations (Table 3). To assist in the discussion of the large-scale biogeochem-

ical changes we divide the upper and the deep ocean based on the 2,000 m depth. This approach also allows for more clearly

distinguishing between changes to the global overturning circulation, air-sea exchange and biological processes on the biogeo-

chemical fields.

10

3.2.1 Carbon

For the ocean-only experiment O-LGM1, the carbon content of the ocean was 517 Pg C less than the O-PI1 experiment (Fig. 4;

Table 3). This change in carbon content reflects the combined effects of an altered ocean physics, which increased carbon in

the deep ocean by 322 Pg C, and a lower atmospheric partial pressure, which caused 839 Pg C of carbon to be lost from the

upper ocean. The air-sea gas exchange scheme in CSIRO Mk3L-COAL is based on the parameterisation given by Wanninkhof15

(1992), and therefore regardless of the increase in solubility in the upper ocean that is caused by cooling, the decrease in partial

pressure in the atmosphere ensured that the upper ocean DIC equilibrated at a lower concentration.

To quantify the carbon gain caused by a cooler ocean with expanded sea ice and an altered overturning circulation, the ocean-

only experiment, O-LGM2, forced by the Cpl-LGM output was run with a PI atmospheric CO2 concentration of 280 ppm. The20

ocean carbon content of O-LGM2 was increased by 1,127 Pg C relative to O-PI1. The gain of carbon in O-LGM2 confirmed

that the glacial ocean was indeed conducive to partitioning greater quantities of carbon in the deep ocean, which can largely

be attributed to the increased formation rate of AABW. AABW has recently been identified as eliciting the greatest response

in atmospheric CO2 of all major ocean water masses (Menviel et al., 2015). However, total carbon content decreased in ex-

periment O-LGM1, which indicated that the the loss from the upper ocean due to equilibration with a lower atmospheric CO225

concentration outweighed the gains caused by an altered physics. To quantify this effect, the ocean-only experiment, O-PI2,

forced by the Cpl-PI output was run with a LGM atmospheric CO2 concentration of 185 ppm. The ocean carbon content of O-

PI2 was reduced by 1,486 Pg C relative to O-PI1, and this confirmed that changes in the carbon content of the ocean are highly

dependent on atmospheric carbon. Although the contribution of physical changes to ocean carbon storage was significant at

1,127 Pg C, it could not in isolation outweigh the loss of 1,486 Pg C caused by equilibration with lower atmospheric CO2.30
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3.2.2 Nutrients and export production

Phosphate (PO4) concentrations in experiment O-LGM1 also declined in the upper ocean and increased in the deep ocean

(Fig. 5). Like DIC, this reorganisation was driven by a strengthened AABW circulation cell and is consistent with proxy re-

constructions. Cadmium and δ13C measurements from the Atlantic Ocean show increased nutrient concentrations in the deep

ocean, but reduced levels above 2,000 m at the LGM (Boyle, 1992; Gebbie, 2014; Marchitto and Broecker, 2006; Tagliabue5

et al., 2009).

A direct consequence of the redistribution of PO4 was the reduction in the production of particulate organic matter across

many regions of the O-LGM1 ocean (Fig. 5). With the exception of the South Pacific and isolated areas in the subtropics,

export production in the O-LGM1 experiment decreased relative to the O-PI1 experiment, so that global export production10

was 56 % of O-PI1. The global reduction was also illustrated by a decrease in regenerated carbon (DICorg), which indicates a

weakened biological carbon pump (Table 3). The magnitude of the reduction in export production for the O-LGM1 experiment

sits outside the range of 76-83 % estimated using oxygen isotopic measurements (Blunier et al., 2002) and in the opposite

direction to the conclusions of Galbraith and Jaccard (2015), who argued for a net strengthening of the glacial biological pump

at the LGM. The strong reduction of export production can be attributed, in part, to a large decrease in export production from15

the sub-Antarctic zone. This feature is in direct conflict with palaeoproductivity proxies in the Atlantic and Indian sectors of

the sub-Antarctic Ocean (Anderson et al., 2002, 2014; Chase et al., 2001; Jaccard et al., 2013; Nürnberg et al., 1997), and some

parts of the Pacific sector (Bradtmiller et al., 2009; Lamy et al., 2014). Outside of the Southern Ocean, the reduction in export

production in the O-LGM1 experiment is consistent with palaeoproductivity evidence (see Introduction).

20

3.2.3 Carbonate chemistry

The loss of phosphate from the upper ocean and its increase at depth was mirrored by changes in alkalinity, so that the more

alkaline signature of AABW, relative to NADW, dominated the deep ocean in experiment O-LGM1. The redistribution of al-

kalinity matches the redistribution of salinity, where salinity decreased (by 0.87 psu) in the surface ocean and increased (by

2.21 psu) in the deep ocean (Fig. 6).25

The aragonite saturation state (Ω) in surface waters of experiment O-LGM1 agrees with proxy reconstructions of coral reef

extent at the LGM. Surface Ω between 40◦ S and 40◦ N in O-LGM1 (Ω = 3.8) was slightly lower than that of O-PI1 (Ω = 4.0),

but increased in the high latitude oceans (Fig. 7). The globally averaged surface Ω of O-LGM1 was therefore only slightly

different from that of O-PI1, at Ω = 3.3 and Ω = 3.4, respectively. Consequently, the simulated Ω = 3.25 isoline, the value at30

present used to define the location of viable coral reef conditions (Hoegh-Guldberg et al., 2007), was nearly unchanged be-

tween the O-LGM1 and O-PI1 experiments. Recent sonar and coring in the southern portion of the Great Barrier Reef (Abbey

et al., 2011; Yokoyama et al., 2011) have detected the presence of drowned coral reefs that existed at the LGM as far south as
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reefs present today. Such observations are consistent with our O-LGM1 experiment and indicates that the extent of viable coral

reefs was unlikely to have been significantly different at the LGM relative to today.

However, the magnitude of increase in alkalinity in the glacial deep ocean, which was not accompanied by a stoichiomet-

rically matched increase in DIC, caused unrealistic increases in the aragonite saturation horizon (Ω = 1), otherwise known5

as the lysocline. The average position of the aragonite saturation horizon doubled in depth from 1526 m in O-PI1 to 2944 m

in O-LGM1. Outside of the eastern tropical Pacific the entire water column of experiment O-LGM1 was super-saturated for

aragonite (Fig. 8). There is good evidence that the mean position of the lysocline was not appreciably different at the LGM

as compared to the Late Holocene (Yu et al., 2014). This information places the simulated lysocline (Ω = 1) of O-LGM1 as

unrealistic.10

3.2.4 Dissolved oxygen

Experiment O-PI1 produced a global average oxygen concentration of ∼181 mmol O2 m−3, similar to the PI global average

of about 178 mmol O2 m−3 (Garcia, 2005). The combination of cooler SSTs, an enhanced subduction of AABW and the

reduction in export production in experiment O-LGM1 dramatically increased the oxygen levels in both the upper and deep15

ocean by ∼80 and ∼120 mmol m−3, respectively, which constitutes a global increase of 55 % (Fig. 9; Table 3).

The increase in dissolved oxygen in O-LGM1 was considerable, but agreed well with proxy reconstructions for the upper

ocean. The oxygen-poor intermediate waters of the western North Pacific (Ishizaki et al., 2009; Shibahara et al., 2007), eastern

North Pacific (Cannariato and Kennett, 1999; Cartapanis et al., 2011; Chang et al., 2014; Dean, 2007; Nameroff et al., 2004;20

Pride et al., 1999; Ohkushi et al., 2013; van Geen et al., 2003), eastern South Pacific (Martinez et al., 2006; Muratli et al.,

2010; Salvatteci et al., 2016), Equatorial Pacific (Leduc et al., 2010) and Indian Ocean (Reichart et al., 1998; Suthhof et al.,

2001; van der Weijden et al., 2006) were better oxygenated at the LGM relative to the PI climate. An important consequence

of oxygenating the upper ocean is a reduction in the strength of denitrification in the these regions. Sedimentary δ15N records

suggest that global aggregate rates of water column denitrification rates over the past 200 kya were lower during glacial periods25

and higher during interglacial periods (Galbraith et al., 2004), and this is consistent with the simulated oxygenation of the upper

ocean.

However, dissolved oxygen concentrations in the deep ocean increased to an average of 301 mmol O2 m−3 in O-LGM1,

and this contrasts starkly with existing palaeoclimate reconstructions. Deep waters of the Indian (Murgese et al., 2008; Sarkar30

et al., 1993; Schmiedl and Mackensen, 2006), North Atlantic (Hoogakker et al., 2014), Southern Ocean (Chase et al., 2001; Jac-

card et al., 2016) and Equatorial Pacific (de la Fuente et al., 2015) were poorly ventilated at the LGM relative to the Holocene.

Drawing from a global compilation of like studies, Jaccard and Galbraith (2012) and Jaccard et al. (2014) demonstrated that the

deep ocean was largely deoxygenated relative to the Holocene on a global scale. While the increase in oxygen concentrations
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in the upper ocean aligned with the direction of change inferred from proxies, the response in the deep ocean can be considered

unrealistic.

3.3 Importance of ocean biogeochemistry for climate5

The spatial pattern of export production, the depth of the aragonite saturation horizon and the dissolved oxygen field of exper-

iment O-LGM1 are outstanding in their disagreement with proxy evidence. Notably, experiment O-LGM1 lost a substantial

quantity of carbon from the upper ocean in excess of the additions to the deep ocean caused by an altered physical ocean

state. Experiment O-LGM1 was therefore unable to explain the glacial-interglacial drawdown of atmospheric CO2, despite the

presence of a physical ocean state within realistic bounds, generated by the Cpl-LGM experiment. If we are to reconcile the10

biogeochemistry of the glacial ocean with that inferred from proxy evidence, we must consider altering ocean biogeochemistry.

3.3.1 Reconciling the carbon budget

Three plausible modifications to the ocean biogeochemistry (see methods) were considered: (1) increased POC export produc-

tion, (2) increased depth of POC remineralisation, and (3) reduced PIC export. In the following we step through the changes to15

carbon content caused by each modification, and the reader is directed to Table 3 for reference.

(1) Experiment O-LGM3. Although the the scaling factor controlling the export production of organic matter was increased

10-fold, the actual increase in POC export production averaged over the global ocean was more modest at roughly 30 %.

Because most of the ocean within the O-LGM1 experiment became phosphate limited as greater quantities of nutrients were20

redistributed into the deep ocean, the increase in export production in experiment O-LGM3 was only felt in those regions where

PO4 was not limiting. The sub-Antarctic zone of the Southern Ocean experienced the greatest increase in export production

(∼250 %) due to the increase in the scaling factor, followed by a few small regions along the Chilean margin and in the North-

west Pacific (Fig. 7). These regional responses caused the global net export production rate to increase from 4.48 to 5.92 Pg C

yr−1. Although this rate of POC export production was still lower than the O-PI1 experiment of 8.01 Pg C yr −1, this increased25

carbon content by 188 Pg C.

(2) Experiment O-LGM4. The shift of organic matter to depth was associated with a global reduction in POC export produc-

tion of ∼1.2 Pg C yr−1 as remineralisation released PO4 and DIC further from the photic zone. Despite the reduction in the

biological pump, the bulk transfer of POC to depth generated an increase in ocean carbon storage of 150 Pg C.30

(3) Experiment O-LGM5. The elimination of PIC in the simulated glacial ocean increased the solubility of CO2 in the

surface ocean and enabled the ocean to store an additional 262 Pg C.
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Independently, none of the above modifications were able to increase ocean carbon content relative to the O-PI1 experi-

ment (O-LGM3: −329 Pg C; O-LGM4: −367 Pg C; O-LGM5: −255 Pg C). However, by employing all three biogeochemical

modifications in one experiment (Experiment O-LGM6), the glacial ocean was able to store an additional 843 Pg C more

than experiment O-LGM1 and 326 Pg C more than O-PI1. This magnitude of increase is within the plausible bounds required5

to offset the loss of atmospheric and terrestrial carbon reported by Ciais et al. (2011) of∼520± 400 Pg C at the LGM (Table 4).

3.3.2 Reconciling export production

Experiment O-LGM1 generated a strongly reduced POC export production across almost all regions of the global ocean

(Fig. 5). Of the three biogeochemical modifications applied to the LGM ocean, only two had any effect on POC export, as the10

amount of PIC exported from the photic zone has no influence on the amount of POC export. Deepening the remineralisation

of POC (O-LGM4) shifted a greater fraction of regenerated PO4 into the deep ocean, which resulted in a global reduction of

export production. Increasing the scaling factor (O-LGM3), however, caused an increase in global export production from 4.48

to 5.92 Pg C yr−1. Most of this increase occurred in the Southern Ocean, particularly the sub-Antarctic zone, and in a few

isolated pockets in the Northwest Pacific and North Atlantic (Fig. 10).15

The increase in the scaling factor dominated the change in export production produced when combining all three biogeochem-

ical modifications (O-LGM6). The strong increase in export production observed in the sub-Antarctic was clearly replicated

within this experiment and reconciles our simulated export production field with current evidence of productivity at the LGM.

In the Southern Ocean, the Atlantic and Indian sectors of the sub-Antarctic zone experienced a greater flux of organics to the20

sediments (Anderson et al., 2002, 2014; Chase et al., 2001; Jaccard et al., 2013; Nürnberg et al., 1997). Whether this was also

the case for the Pacific sector remains under debate, with some evidence for increase (Bradtmiller et al., 2009; Lamy et al.,

2014) conflicting with evidence for no change (Bostock et al., 2013; Chase et al., 2003). Meanwhile, it is widely accepted that

waters south of the Antarctic Polar Front were reduced in their productivity (Bostock et al., 2013; Chase et al., 2003; Elderfield

and Rickaby, 2000; Francois et al., 1997; Frank et al., 2000; Kohfeld et al., 2005; Kumar et al., 1995; Mortlock et al., 1991;25

Ninnemann and Charles, 1997; Shemesh et al., 1993), likely due to increased sea ice extent (Gersonde et al., 2003; Jaccard

et al., 2013) and stratification (Anderson et al., 2014; Jaccard et al., 2005).

In experiment O-LGM6, net export production remained weakened by 3.19 Pg C yr−1 relative to O-PI1 despite the appli-

cation of biogeochemical modifications. This result is contrary to arguments for a strengthened biological pump at the LGM30

(Galbraith and Jaccard, 2015), and aligns more with the findings of Blunier et al. (2002). The net decline in export production

observed in this study was dominated by the decline in tropical and subtropical waters. Many palaeoproductivity studies located

outside of the sub-Antarctic zone have found weakened productivity at the LGM (Chang et al., 2014, 2015; Costa et al., 2016;

Crusius et al., 2004; Kohfeld et al., 2005; Kohfeld and Chase, 2011; Jaccard et al., 2005; McKay et al., 2015; Ortiz et al., 2004;
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Riethdorf et al., 2013b; Salvatteci et al., 2016; Singh et al., 2011; Thomas et al., 1995). Additionally, an enhanced utilisation

of available nutrients in the sub-Antarctic zone (Martinez-Garcia et al., 2014) would reduce nutrient content of intermediate

waters formed in the Southern Ocean and would thus reduce the delivery of nutrients to lower latitudes (Sarmiento et al., 2004).

This mechanism coupled with cooler temperatures caused reductions in export production across much of the mid and lower

latitude oceans in experiment O-LGM6, which maintains the qualitative agreement between simulated and proxy observations5

(see Introduction). Hence, the good spatial agreement between O-LGM6 and palaeoproductivity proxies at the LGM gives

confidence that a stronger biological pump in sub-Antarctic waters, combined with an expanded sea ice cover that limited air-

sea exchange in the Antarctic Zone, was a key component for transferring carbon from the atmosphere to the ocean at the LGM.

3.3.3 Reconciling carbonate chemistry10

There is good evidence that the mean position of the lysocline was not appreciably different at the LGM as compared to the

Late Holocene (Yu et al., 2014). Because much of the ocean was saturated for aragonite in the O-LGM6 experiment, additional

processes are required to shoal the aragonite saturation horizon (Ω = 1) and thereby reconcile proxy evidence.

One mechanism to shoal the aragonite saturation horizon would be to reduce continental inputs of alkalinity at the LGM.15

However, the presence of glaciers, drier atmospheric conditions and the exposure of continental shelves due to lower sea level

would have increased the supply of carbonates to the ocean (Gibbs and Kump, 1994; Riebe et al., 2004), thereby increasing

ocean alkalinity and further deepening the aragonite saturation horizon. This mechanism has been largely refuted as having

a significant effect on the glacial-interglacial difference in the carbon budget (Brovkin et al., 2007; Foster and Vance, 2006;

Jones et al., 2002), and can therefore be ignored.20

The individual biogeochemical modifications were also insufficient to effectively shoal the depth of aragonite saturation to

be consistent with palaeo evidence. However, combining all three modifications in experiment O-LGM6 shoaled the aragonite

saturation horizon significantly (Fig. 11), with a globally-averaged position of 1818 m. Regionally, the aragonite saturation

horizon in the Pacific Ocean was deeper in experiment O-LGM6 relative to O-PI1, but was shallower in the Atlantic Ocean25

and within the Atlantic and Indian sectors of the sub-Antarctic zone. Remarkably, these positions relative to the PI climate

are consistent with palaeoproxy reconstructions. A deepening of less than 1,000 m has been suggested in the North Pacific

and Southern Ocean at the LGM (Anderson et al., 2002; Catubig et al., 1998), while other proxy evidence suggests that the

lysocline in the Atlantic Ocean was shallower than the PI climate (Anderson et al., 2002).

30

However, an important caveat of this study is the exclusion of calcium carbonate (CaCO3) burial within ocean sediments.

Because this process is not included in the model, it is highly likely that the deepening of the aragonite saturation horizon that

occurred in experiment O-LGM1 was too extreme. CaCO3 burial lowers the alkalinity of the glacial ocean, and is therefore

a negative feedback mechanism to changes in the position of the aragonite saturation horizon (see Sigman et al., 2010, for a
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review). If the aragonite saturation horizon deepens, as found in O-LGM1, the burial of CaCO3 would increase and cause a

subsequent reduction in ocean alkalinity, the depth of the lysocline and the ability of the ocean to store carbon. By not taking

this process into account in experiment O-LGM1, both the deepening of the aragonite saturation horizon and the atmospheric

drawdown of carbon were overestimated.

5

However, the same reasoning can be applied to the experiments with biogeochemical modifications. If the burial of CaCO3

was included in these experiments, the shoaling in the aragonite saturation horizon would have been somewhat mitigated by

decreased CaCO3 burial that increased ocean alkalinity. Consequently, the shoaling that was observed in these experiments

was likely exaggerated, just as the deepening observed in experiment O-LGM1 was exaggerated. Again, this can be applied

to changes in the carbon content of the ocean, as a shallower aragonite saturation horizon would have increased whole-ocean10

alkalinity and thereby increased the drawdown of atmospheric CO2. This effect would have been particularly important for

experiment O-LGM5, where inorganic carbon export was eliminated. If whole-ocean alkalinity was able to respond to the

decrease in CaCO3 rain, this would further increase the associated CO2 drawdown. Therefore, the exclusion of CaCO3 burial

in experiment O-LGM6 caused an exaggerated shoaling of the aragonite saturation horizon and an underestimated increase in

carbon content.15

3.3.4 Reconciling dissolved oxygen

As discussed previously, the increase in oxygen concentrations of the upper ocean in experiment O-LGM1 is consistent with

proxy evidence. All experiments with modified biogeochemistry, including O-LGM6, had little effect on the upper ocean

oxygen concentration (Fig. 12; Table 3). Modifying the biogeochemistry did not compromise the good agreement between20

simulated and proxy reconstructions of oxygen concentrations in the upper ocean.

Modifying ocean biogeochemistry did, however, have a large effect on the oxygen concentrations of the deep ocean (Fig. 13).

Increasing export production (O-LGM3) and deepening the remineralisation depth (O-LGM4) both reduced oxygen concen-

trations by 28 and 13 mmol m−3, respectively. The combination of these modifications (O-LGM6) amplified their individual25

effects, so that deep ocean oxygen was reduced by 63 mmol m−3 relative to the O-LGM1. The increased sensitivity of deep

ocean oxygen to the combination of increased export production and a deeper remineralisation depth was due to an increase in

the quantity of regenerated nutrients (DICorg and Porg) that resulted (Table 3). A greater proportion of regenerated nutrients

relative to preformed nutrients at the LGM has been identified as a key driver of interior ocean deoxygenation (Jaccard and

Galbraith, 2012; Sigman et al., 2010), and this process was captured in experiment O-LGM6.30

While the combination of biogeochemical modifications (O-LGM6) did reduce deep ocean oxygen towards those concen-

trations equivalent to or lower than those of experiment O-PI1 in a number of areas (Fig. 13), by no means were average deep

ocean concentrations (238 mmol m−3) close to those of O-PI1 (181 mmol m−3). The over-oxygenation of the deep ocean rel-
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ative to proxy records may be resolved by (1) reducing the strength of the AABW circulation cell, and/or (2) further increasing

export production, and/or (3) altering the spatial pattern of export production. These possibilities strongly indicate that global

export production at the LGM may be underestimated by our simulations. Further investigation is required to reconcile our

experiments with palaeo evidence of deep ocean deoxygenation.

5

4 Conclusions

In this study we have shown that physical changes to the ocean state, including an expanded sea ice field and an altered circula-

tion, are not sufficient to explain the drawdown of 80-100 ppm CO2 in the atmosphere of the LGM. While we demonstrate that

the physical ocean state at the LGM is indeed highly conducive to storing carbon, owing largely to an increased subduction10

of Antarctic Bottom Water, the tendency for the upper ocean to lose carbon through its equilibration with a lower atmospheric

CO2 concentration outweighs these gains. Thus, various biogeochemical modifications are necessary to overcome these losses

and produce net gains of carbon in the ocean. The marine biogeochemical changes explored in this study were (1) an increase

in export production consistent with greater iron fertilisation, (2) a shift of remineralisation to the deep ocean consistent with

cooler temperatures, and (3) a decrease in the production of Particulate Inorganic Carbon consistent with cooler temperatures.15

Only when all three changes were applied to a glacial ocean does the ocean carbon content increase sufficiently to account

for the combined loss of carbon from the atmosphere and land at the LGM. Furthermore, their addition helps to reconcile

unrealistic fields of export production, aragonite saturation state and dissolved oxygen produced by a simulation of the LGM

without biogeochemical changes.

20

A key limitation of this study was the inability of biogeochemical modifications to truly deoxygenate the deep ocean on a

global scale, as shown in palaeoclimate reconstructions. Either one or a combination of the following could resolve this incon-

sistency in our simulations: (1) the strength of the AABW circulation cell was too strong; (2) global export production was

too weak; (3) the true spatial pattern of export production was not captured. Importantly, points (2) and (3) further implicate

ocean biogeochemical processes as a strong influence on climate. New focus should be applied to investigate these possibilities,25

including the use of multiple representations of the LGM physical ocean state and its effect on ocean biogeochemistry. Future

work should also aim to include sedimentary processes, including carbonate burial, considering the importance of sediment

processes to ocean biogeochemistry and climate.
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Table 1. Summary of modelling experiments performed. An O before a model name denotes that it was an ocean-only simulation.

Experiment Model Greenhouse Gas Orbital Comment

Forcing (CO2e)a Parameters

Cpl-PI Coupled 280 0 ka BP Unmodified BGC

Cpl-LGM Coupled 167 21 ka BP Unmodified BGC

Experiment Model Atmospheric Climate Comment

CO2 (ppm) State

O-PI1 Ocean 280 PI Unmodified BGC

O-PI2 Ocean 185 PI Unmodified BGC

O-LGM1 Ocean 185 LGM Unmodified BGC

O-LGM2 Ocean 280 LGM Unmodified BGC

O-LGM3 Ocean 185 LGM 10× POC export scaling increase

O-LGM4 Ocean 185 LGM Increased depth of POC remineralizationb

O-LGM5 Ocean 185 LGM No PIC export

O-LGM6 Ocean 185 LGM BGC modifications of O-LGM3, O-LGM4 and O-LGM5

a Carbon Dioxide equivalents, corresponding to CO2, CH4 and N2O from 280 ppm/760 ppb/270 ppb for PI simulations to 185 ppm/350 ppb/200 ppb for LGM

simulations.
b Power law exponent for POC remineralization changed from−0.9 to−0.7.

29

Clim. Past Discuss., doi:10.5194/cp-2016-73, 2016
Manuscript under review for journal Clim. Past
Published: 11 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 1. Annual sea surface temperature (SST) difference between (a) the coupled PI experiment, Cpl-PI, and the observations from

Levitus (2001), and (b) the difference between the coupled LGM and PI experiments (Cpl-LGM −Cpl-PI). Solid contour lines denotes

positive changes in SST by 4 and 8 ◦C, while negative changes in SST are denoted by dashed lines at 4 and 8 ◦C.
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Figure 2. Annual average sea-ice cover for (a) the Cpl-PI Northern Hemisphere, (b) the Cpl-LGM Northern Hemisphere, (c) the Cpl-PI

Southern Hemisphere, (d) the Cpl-LGM Southern Hemisphere. The red and blue contour lines in each projection represent the maximum and

minimum seasonal sea ice extents (where sea ice concentration equals 15 % as per Gersonde et al. (2005)). In panel (b), the dashed orange

contour line represents the maximum seasonal sea ice extent produced by the IPSL climate system model, which took part in the PMIP3

LGM experiment, and is broadly consistent with the results of other PMIP3 models. In panel (d), the coloured markers represent locations

were winter sea ice was deemed to have been present (blue) and absent (red) at the LGM according to Gersonde et al. (2005).
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Table 4. The change in the LGM ocean carbon content relative to the PI ocean.

Estimate ∆Carbon

(Pg C)

Ciais et al. (2011) 520 ± 400a

PI - unmodified BGCb −520 ± 400

PI - unmodified BGC (CO2 of 185 ppm) −2006 ± 400

LGM - unmodified BGC −1037 ± 400

LGM - unmodified BGC (CO2 of 280 ppm) 607 ± 400

LGM - modified BGC (O-LGM6)c −194 ± 400

a Estimate of increase in ocean carbon content during the LGM made by Ciais

et al. (2011), whereby atmospheric carbon was reduced by 194± 2 Pg C and

terrestrial carbon was reduced by 330± 400 Pg C.
b BGC refers to biogeochemistry.
c Assumes all three biological modifications that were postulated (see Table 1,

experiments O-LGM3, O-LGM4 and O-LGM5) occurred to provide an upper

bound estimate of ocean carbon storage.
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Figure 4. The zonally-averaged change in the concentration of dissolved inorganic carbon (mmol m−3) relative to the O-PI1 experiment

with an atmospheric CO2 concentration of 280 ppm for (a) the PI ocean with an atmospheric CO2 concentration of 185 ppm (O-PI2), (b) the

LGM ocean with an atmospheric CO2 concentration of 185 ppm (O-LGM1), and (c) the LGM ocean with an atmospheric CO2 concentration

of 280 ppm (O-LGM2).
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Figure 5. Changes in the export production of Particulate Organic Matter (POC) and Phosphate concentrations between the O-LGM1 and

O-PI1 experiments. (a) Annually averaged export of POC from the upper 50 m (g Carbon m−2 year−1) for O-PI1, (b) the O-LGM1 − O-PI1

difference in Phosphate concentrations (mmol m−3), and (c) the O-LGM1 − O-PI1 difference in export production of POC from the upper

50 m (g Carbon m−2 year−1).
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Figure 6. Change in the zonally-averaged global distribution of (a) alkalinity (mmol Eq m−3), and (b) salinity (psu) between the O-LGM1

and O-PI1 experiments (O-LGM1 − O-PI1). Despite the strong reduction in salinity in upper ocean of the O-LGM1 experiment relative to

O-PI1, the whole-ocean salt content increased by 0.5 psu.
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Figure 7. The annual average surface aragonite saturation state (Ω) calculated from (a) the observations of Key et al. (2004), (b) the O-PI1

experiment, and (c) the O-LGM1 experiment.
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Figure 8. The depth of the aragonite saturation horizon (Ω = 1) calculated from (a) the observations of Key et al. (2004), (b) the O-PI1

experiment, and (c) the O-LGM1 experiment. The contour lines represent 500, 1000, 2000 and 3000 m depth. Note that the O-LGM1

experiment, which is unmodified in its biogeochemistry relative to the O-PI1 experiment, is completely saturated in aragonite across the

majority of the ocean (white space).
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Figure 9. Zonally-averaged dissolved oxygen concentrations (mmol m−3) in (a) the modern ocean according to the World Ocean Atlas

(Garcia et al., 2013), (b) the O-PI1 experiment, and (c) the O-LGM1 experiment.
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Figure 10. Change in annually averaged export of particulate organic carbon from the upper 50 m (g Carbon m−2 year−1) between the

LGM and PI from the experiments with modified biogeochemical formulations for (a) O-LGM3 − O-PI1, (b) O-LGM4 − O-PI1, and (c)

O-LGM6 − O-PI1. It should be noted that the export production field of particulate organic carbon for experiment O-LGM5, whereby

particulate inorganic carbon was set to zero, did not differ from unmodified experiment O-LGM1 and is therefore not shown. For this

comparison, the reader is directed to Figure 5. 42
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Figure 11. The depth of the aragonite saturation horizon (Ω = 1) for the experiments with modified biogeochemical formulations. (a) O-

LGM3, (b) O-LGM4, (c) O-LGM5, and (d) O-LGM6. The white areas in the ocean are regions where the aragonite saturate horizon is deeper

than the ocean bottom.
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Figure 12. Change in oxygen concentration (mmol m−3) at 500 m between the LGM and PI for the experiments with modified biogeo-

chemical formulations. (a) O-LGM3 − O-PI1, (b) O-LGM4 − O-PI1, (c) O-LGM5 − O-PI1, and (d) O-LGM6 − O-PI1. A depth of 500

m is representative of the depth at which the greatest extent of low oxygen water exists in the simulated PI climate. It should be noted that

the oxygen field for experiment O-LGM5, whereby particulate inorganic carbon was set to zero, did not differ from the unmodified glacial

experiment O-LGM1 and can therefore be used here as a reference to that simulation.
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Figure 13. Change in oxygen concentration (mmol m−3) at 3,500 m between the LGM and PI for the experiments with modified biogeo-

chemical formulations. (a) O-LGM3 − O-PI1, (b) O-LGM4 − O-PI1, (c) O-LGM5 − O-PI1, and (d) O-LGM6 − O-PI1. A depth of 3,500

m is representative of the deep ocean. It should be noted that the oxygen field for experiment O-LGM5, whereby particulate inorganic car-

bon was set to zero, did not differ from the unmodified glacial experiment O-LGM1 and can therefore be used here as a reference to that

simulation.
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